Fundamentals of Traffic Operations and Control Nikolas Geroliminis Exercise solutions Adaptive Signal Control

For each vehicle, the travel time from "arrival" to the detectors:

$$\frac{L - L_d}{v_{free}} = \frac{110 - 20}{15} s = 6 \, s$$

The arrival time to detectors can be obtained as

ARRIVALS (A)	ARRIVALS (B)
7.5	
11.2	
13.6	
	14.5
15.6	
	17.3
17.8	
	21.5
	28.0
29.0	
	31.2
	33.4
38.7	
	38.8
40.4	
	40.6
	43.3

The minimum green time = $\frac{L_d}{L_v}$ · the minimum headway = $\frac{20}{5}$ · 2 s = 8 s

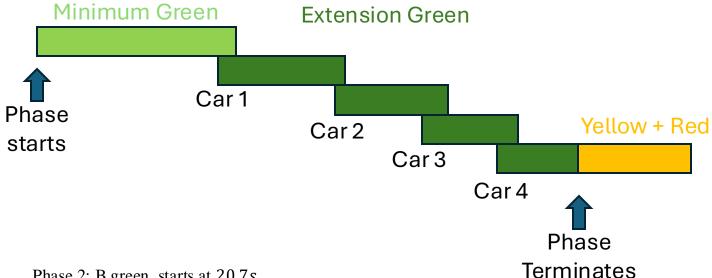
The extension policy can be expressed as

$$t_{gap}(T) = \begin{cases} 4, & 0 \le T < 8, \\ -0.25T + 6, & 8 \le T < 16, \\ 2, & T \ge 16. \end{cases}$$

Phase 1: A green

Car 1: $7.5 + t_{gap}(7.5) = 7.5 + 4 = 11.5$,

Car 2: $11.2 + t_{qap}(11.2) = 11.2 - 0.25 \cdot (11.2 - 0) + 6 = 14.4$


Car 3: $13.6 + t_{gap}(13.6) = 13.6 - 0.25 \cdot (13.6 - 0) + 6 = 16.2$

Car 4: $15.6 + t_{gap}(15.6) = 15.6 - 0.25 \cdot (15.6 - 0) + 6 = 17.7 < 17.8$ (when Car 5 arrives)

Start gap out, green time for Phase 1: $G_A^1 = 17.7 s$

After "yellow + red" = 17.7s + 3s = 20.7s

Phase 1 Diagram:

Phase 2: B green, starts at 20.7s, minimum green is 20.7 + 8s = 28.7sMaximum green is 20.7 + 25s = 45.7s

Car 1: 14.5, in the queue,

Car 2: 17.3, in the queue,

Car 1 and Car 2 are in the queue, they need 2 + 2 = 4 s to clear.

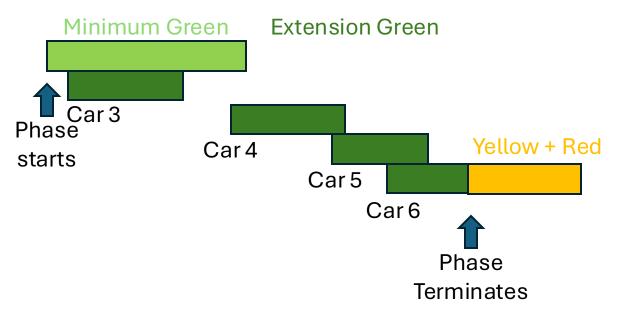
Car 3: $21.5 + t_{gap}(21.5 - 20.7) = 21.5 + 4 = 25.5s$

Car 4: 28.0 s < 28.7 s

 $28.0 + t_{gap}(28.0 - 20.7) = 28.0 + 4 = 32.0s$

Car 5: 31.2 s < 32.0 s

 $31.2 + t_{gap}(31.2 - 20.7) = 34.575 s$


Car 6: 33.4 s < 34.575 s

 $33.4 + t_{gap}(33.4 - 20.7) = 36.225s < 38.8 \text{ s (when Car 7 arrives)}$

Start gap out, green time for Phase 2: $G_B^2 = 36.225 - 20.7s = 15.525s$.

After "yellow + red" = 36.225s + 3s = 39.225s.

Phase 2 Diagram:

Phase 3: A green, starts at 39.225s

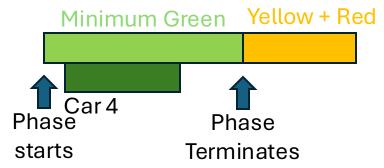
minimum green is 39.225 + 8s = 47.225 s

maximum green is 39.225 + 25 s = 64.225 s

Car 1: 17.8, in the queue,

Car 2: 29.0, in the queue,

Car 3: 38.7, in the queue.


3 cars are in the queue, they need 2 + 2 + 2 = 6 s to clear.

Car 4: $40.4 + t_{qap}(40.4 - 39.225) = 44.4 s$

Green time for Phase 3: $G_A^3 = 8 s$

After "yellow + red" = 47.225 + 3 s = 50.225 s.

Phase 3 Diagram:

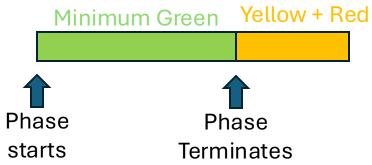
Phase 4: B green, starts at 50.225 s

minimum green is 50.225 s + 8 s = 58.225 s

maximum green is 50.225 s + 25 s = 75.225 s

Car 1: 38.8, in the queue,

Car 2: 40.6, in the queue,


Car 3: 43.3, in the queue.

3 cars are in the queue, they need 2 + 2 + 2 s = 6 s to clear.

Green time for Phase 4: $G_B^4 = 8 s$

After "yellow + red" = 58.225 + 3 s = 61.225 s.

Phase 4 Diagram:

